Thursday, 17 October 2013

 ELEMENTS OF A DIGITAL COMMUNICATION SYSTEM

Figure 1.1-1 illustrates the functional diagram and the basic elements of a digital communication system.
The source output may be either an analog signal, such as an audio or video signal, or a digital signal, such as the output of a teletype machine, that is discrete in time and has a finite number of output characters. In a digital communication system, the messages produced by the source
are converted into a sequence of binary digits.
The process of efficiently converting the output of either an analog or digital source into a sequence of binary digits is called source encoding or data compression.The sequence of binary digits from the source encoder, which we call the information sequence, is passed to the channel encoder.
The  purpose  of  the  channel  encoder  is  to  introduce,  in  a  controlled manner, some redundancy in the binary information sequence that can be used  at  the  receiver  to  overcome  the  effects of  noise  and  interference encountered in the transmission of the signal through the channel.
This  increase  the  reliability  of  the  received  data  and  improves  the fidelity of the received  signal. The binary sequence at the output of the channel encoder is passed to the digital modulator, which  serves as  the  interface to  the  communication channel. Since  nearly  all the communication  channels  encountered  in practice are  capable of  transmitting electrical signals (waveforms),  the primary purpose  of  the  digital modulator  is  to  map  the  binary  information
sequence into signal waveforms.
To elaborate  on this  point,  let us suppose  that  the coded  information sequence  is to be transmitted one bit at a time at some uniform rate R bits  per  second  (bits/s).  The  digital  modulator  may  simply  map  the binary  digit  0  into  a  waveform  so(t)  and  the  binary  digit  1  into  a waveform  s,  (t). In this manner, each bit  from the channel  encoder  is transmitted separately. We call this binary modulation. Alternatively, the modulator may transmit 6 coded information bits at a time by using M = 2h
distinct waveforms so(t), i = 0, 1, ..., M - 1, one waveform for each of the 26 possible  b-bit  sequences.  We  call  this M-ary modulation (M > 2).
Note that a new b-bit sequence enters the modulator every b/R seconds.
Hence, when the channel bit rate R is fixed, the amount of time available to transmit one of the M waveforms corresponding to a b-bit sequence is b times the time period in a system that uses binary modulation.

The communication channel is the physical medium that is used to send the signal from the transmitter to the receiver. In wireless transmission, the channel may be the atmosphere (free space).
On  the  other  hand,  telephone  channels usually  employ  a  variety  of physical media,  including  wire lines, optical fiber cables,  and wireless (microwave radio). Whatever  the  physical  medium  used  for transmission  of'  the information,  the  essential  feature  is  that  the  transmitted  signal  is corrupted  in  a  random  manner  by  a  variety  of  possible  mechanisms, such  as  additive thermal noise generated  by  electronic  devices;  man-made  noise,  e.g., automobile  ignition  noise;  and  atmospheric  noise, e.g., electrical lightning discharges during thunderstorms.
At  the  receiving  end  of  a  digital  communication  system,  the digital demodulator  processes  the  channel-corrupted  transmitted  waveform and  reduces  the  waveforms  to  a  sequence  of  numbers  that  represent estimates of the transmitted  data symbols (binary or M -ary).
This  sequence  of  numbers is passed  to the channel  decoder,  which attempts  to  reconstruct  the  original  information  sequence  from knowledge of the code  used by the channel encoder and  the redundancy contained in the received data.
A measure of' how well the demodulator and decoder perform is the fre-quency  with  which  errors  occur  in  the  decoded  sequence.  More precisely,  the average  probability  of  a  bit-error  at  the  output  of  the decoder  is a measure  of  the performance  of the demodulator decoder
combination.
In  general,  the  probability  of  error  is  a  function  of  the  code characteristics, the  types of waveforms used to transmit the information over  the  channel,  the  transmitter  power,  the  characteristics  of  the channel (i.e., the amount Of noise, the Mature of the interference),  and
the method of' demodulation and decoding.
The  source  decoder  accepts  the  output  sequence  from  the  channel decoder  and,  from  knowledge  of  the source  encoding  method  used, attempts to reconstruct the original signal from tile source. Because  of channel decoding  errors and possible  distortion  introduced by the source encoder, and perhaps, the source decoder, the signal at  the output of the source decoder is an approximation to the original source output  The difference  or some function  of the difference between  the original  signal  and  the  reconstructed  signal  is  a  measure  of  the distortion introduced by the digital communication system.

Digital Communication advantages

1.Reliable communication; less sensitivity to changes in environmental conditions (temperature, etc.)
2.Easy multiplexing
3.Easy signaling 
        „Hook status, address digits, call progress information
4.Voice and data integration
5.Easy processing like encryption and compression
6.Easy system performance monitoring
       „QOS monitoring
7.Integration of transmission and switching
8.Signal regeneration, operation at low SNR, superior performance
9.Integration of services leading to ISD

Digital Communication System Disadvantages

1.Increased bandwidth
         „64 KB for a 4 KHz channel, without compression (However, less with compression)
2.Need for precision timing „Bit, character, frame synchronization needed
3.Analogue to Digital and Digital to Analogue conversions 
          „Very often non-linear ADC and DAC used, some performance degradation
4.Higher complexity